317 research outputs found

    On the Statistical Significance of the Bulk Flow Measured by the PLANCK Satellite

    Full text link
    A recent analysis of data collected by the Planck satellite detected a net dipole at the location of X-ray selected galaxy clusters, corresponding to a large-scale bulk flow extending at least to z0.18z\sim 0.18, the median redshift of the cluster sample. The amplitude of this flow, as measured with Planck, is consistent with earlier findings based on data from the Wilkinson Microwave Anisotropy Probe (WMAP). However, the uncertainty assigned to the dipole by the Planck team is much larger than that found in the WMAP studies, leading the authors of the Planck study to conclude that the observed bulk flow is not statistically significant. We here show that two of the three implementations of random sampling used in the error analysis of the Planck study lead to systematic overestimates in the uncertainty of the measured dipole. Random simulations of the sky do not take into account that the actual realization of the sky leads to filtered data that have a 12% lower root-mean-square dispersion than the average simulation. Using rotations around the Galactic pole (the Z axis), increases the uncertainty of the X and Y components of the dipole and artificially reduces the significance of the dipole detection from 98-99% to less than 90% confidence. When either effect is taken into account, the corrected errors agree with those obtained using random distributions of clusters on Planck data, and the resulting statistical significance of the dipole measured by Planck is consistent with that of the WMAP results.Comment: A & A, in pres

    A measurement of large-scale peculiar velocities of clusters of galaxies: results and cosmological implications

    Full text link
    Peculiar velocities of clusters of galaxies can be measured by studying the fluctuations in the cosmic microwave background (CMB) generated by the scattering of the microwave photons by the hot X-ray emitting gas inside clusters. While for individual clusters such measurements result in large errors, a large statistical sample of clusters allows one to study cumulative quantities dominated by the overall bulk flow of the sample with the statistical errors integrating down. We present results from such a measurement using the largest all-sky X-ray cluster catalog combined to date and the 3-year WMAP CMB data. We find a strong and coherent bulk flow on scales out to at least > 300 h^{-1} Mpc, the limit of our catalog. This flow is difficult to explain by gravitational evolution within the framework of the concordance LCDM model and may be indicative of the tilt exerted across the entire current horizon by far-away pre-inflationary inhomogeneities.Comment: Ap.J. (Letters), in press. 20 Oct issue (Vol. 686

    Temperature Anisotropies and Distortions Induced by Hot Intracluster Gas on the Cosmic Microwave Background

    Get PDF
    The power spectrum of temperature anisotropies induced by hot intracluster gas on the cosmic background radiation is calculated. For low multipoles it remains constant while at multipoles above l>2000l>2000 it is exponentially damped. The shape of the radiation power spectrum is almost independent of the average intracluster gas density profile, gas evolution history or clusters virial radii; but the amplitude depends strongly on those parameters and could be as large as 20% that of intrinsic contribution. The exact value depends on the global properties of the cluster population and the evolution of the intracluster gas. The distortion on the Cosmic Microwave Background black body spectra varies in a similar manner. The ratio of the temperature anisotropy to the mean Comptonization parameters is shown to be almost independent of the cluster model and, in first approximation, depends only on the number density of clusters.Comment: 10 pages, Latex, 3 figures; to be published in Ap

    Determining cosmic microwave background structure from its peak distribution

    Get PDF
    We present a new method for time-efficient and accurate extraction of the power spectrum from future cosmic microwave background (CMB) maps based on properties of peaks and troughs of the Gaussian CMB sky. We construct a statistic describing their angular clustering - analogously to galaxies, the 2-point angular correlation function, ξν(θ)\xi_\nu(\theta). We show that for increasing peak threshold, ν\nu, the ξν(θ)\xi_\nu(\theta) is strongly amplified and becomes measurable for ν\nu\geq1 on angular scales 10\leq 10^\circ. Its amplitude at every scale depends uniquely on the CMB temperature correlation function, C(θ)C(\theta), and thus the measured ξν\xi_\nu can be uniquely inverted to obtain C(θ)C(\theta) and its Legendre transform, the power spectrum of the CMB field. Because in this method the CMB power spectrum is deduced from high peaks/troughs of the CMB field, the procedure takes only [f(ν)]2N2[f(\nu)]^2N^2 operations where f(ν)f(\nu) is the fraction of pixels with δTν|\delta T|\geq\nu standard deviations in the map of NN pixels and is e.g. 0.045 and 0.01 for ν\nu=2 and 2.5 respectively. We develop theoretical formalism for the method and show with detailed simulations, using MAP mission parameters, that this method allows to determine very accurately the CMB power spectrum from the upcoming CMB maps in only (104103)×N2\sim(10^{-4}-10^{-3})\times N^2 operations.Comment: To be published in Ap.J. Letters. Minor changes to match the journal versio

    Limits on Hot Intracluster Gas Contributions to the Tenerife Temperature Anisotropy Map

    Get PDF
    We limit the contribution of the hot intracluster gas, by means of the Sunyaev-Zel'dovich effect, to the temperature anisotropies measured by the Tenerife experiment. The data is cross-correlated with maps generated from the ACO cluster catalogue, the ROSAT PSPC catalogue of clusters of galaxies, a catalogue of superclusters and the HEAO 1 A-1 map of X-ray sources. There is no evidence of contamination by such sources at an rms level of 8μ\sim 8\muK at 99% confidence level at 5o5^o angular resolution. We place an upper limit on the mean Comptonization parameter of y1.5×106 y \le 1.5\times 10^{-6} at the same level of confidence. These limits are slightly more restrictive than those previously found by a similar analysis on the COBE/DMR data and indicate that most of the signal measured by Tenerife is cosmological.Comment: To be published in ApJ (main journal
    corecore